extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C9).1C32 = C27⋊C9 | φ: C32/C1 → C32 ⊆ Aut C3×C9 | 27 | 9 | (C3xC9).1C3^2 | 243,22 |
(C3×C9).2C32 = C32.He3 | φ: C32/C1 → C32 ⊆ Aut C3×C9 | 27 | 9 | (C3xC9).2C3^2 | 243,28 |
(C3×C9).3C32 = C32.5He3 | φ: C32/C1 → C32 ⊆ Aut C3×C9 | 27 | 9 | (C3xC9).3C3^2 | 243,29 |
(C3×C9).4C32 = C32.6He3 | φ: C32/C1 → C32 ⊆ Aut C3×C9 | 27 | 9 | (C3xC9).4C3^2 | 243,30 |
(C3×C9).5C32 = C9⋊He3 | φ: C32/C1 → C32 ⊆ Aut C3×C9 | 81 | | (C3xC9).5C3^2 | 243,39 |
(C3×C9).6C32 = C32.23C33 | φ: C32/C1 → C32 ⊆ Aut C3×C9 | 81 | | (C3xC9).6C3^2 | 243,40 |
(C3×C9).7C32 = C9⋊3- 1+2 | φ: C32/C1 → C32 ⊆ Aut C3×C9 | 81 | | (C3xC9).7C3^2 | 243,41 |
(C3×C9).8C32 = C33.31C32 | φ: C32/C1 → C32 ⊆ Aut C3×C9 | 81 | | (C3xC9).8C3^2 | 243,42 |
(C3×C9).9C32 = C92⋊7C3 | φ: C32/C1 → C32 ⊆ Aut C3×C9 | 81 | | (C3xC9).9C3^2 | 243,43 |
(C3×C9).10C32 = C92⋊4C3 | φ: C32/C1 → C32 ⊆ Aut C3×C9 | 81 | | (C3xC9).10C3^2 | 243,44 |
(C3×C9).11C32 = C92⋊5C3 | φ: C32/C1 → C32 ⊆ Aut C3×C9 | 81 | | (C3xC9).11C3^2 | 243,45 |
(C3×C9).12C32 = C92⋊8C3 | φ: C32/C1 → C32 ⊆ Aut C3×C9 | 81 | | (C3xC9).12C3^2 | 243,46 |
(C3×C9).13C32 = C92⋊9C3 | φ: C32/C1 → C32 ⊆ Aut C3×C9 | 81 | | (C3xC9).13C3^2 | 243,47 |
(C3×C9).14C32 = C32.C33 | φ: C32/C1 → C32 ⊆ Aut C3×C9 | 27 | 9 | (C3xC9).14C3^2 | 243,59 |
(C3×C9).15C32 = C9.2He3 | φ: C32/C1 → C32 ⊆ Aut C3×C9 | 27 | 9 | (C3xC9).15C3^2 | 243,60 |
(C3×C9).16C32 = C92⋊C3 | φ: C32/C3 → C3 ⊆ Aut C3×C9 | 27 | 3 | (C3xC9).16C3^2 | 243,25 |
(C3×C9).17C32 = C92⋊2C3 | φ: C32/C3 → C3 ⊆ Aut C3×C9 | 27 | 3 | (C3xC9).17C3^2 | 243,26 |
(C3×C9).18C32 = C92.C3 | φ: C32/C3 → C3 ⊆ Aut C3×C9 | 27 | 3 | (C3xC9).18C3^2 | 243,27 |
(C3×C9).19C32 = C3×C9⋊C9 | φ: C32/C3 → C3 ⊆ Aut C3×C9 | 243 | | (C3xC9).19C3^2 | 243,33 |
(C3×C9).20C32 = C92⋊3C3 | φ: C32/C3 → C3 ⊆ Aut C3×C9 | 81 | | (C3xC9).20C3^2 | 243,34 |
(C3×C9).21C32 = C9×He3 | φ: C32/C3 → C3 ⊆ Aut C3×C9 | 81 | | (C3xC9).21C3^2 | 243,35 |
(C3×C9).22C32 = C9×3- 1+2 | φ: C32/C3 → C3 ⊆ Aut C3×C9 | 81 | | (C3xC9).22C3^2 | 243,36 |
(C3×C9).23C32 = C3×C3.He3 | φ: C32/C3 → C3 ⊆ Aut C3×C9 | 81 | | (C3xC9).23C3^2 | 243,54 |
(C3×C9).24C32 = C9.4He3 | φ: C32/C3 → C3 ⊆ Aut C3×C9 | 27 | 3 | (C3xC9).24C3^2 | 243,16 |
(C3×C9).25C32 = C9.5He3 | φ: C32/C3 → C3 ⊆ Aut C3×C9 | 81 | 3 | (C3xC9).25C3^2 | 243,19 |
(C3×C9).26C32 = C9.6He3 | φ: C32/C3 → C3 ⊆ Aut C3×C9 | 81 | 3 | (C3xC9).26C3^2 | 243,20 |
(C3×C9).27C32 = C3×C27⋊C3 | φ: C32/C3 → C3 ⊆ Aut C3×C9 | 81 | | (C3xC9).27C3^2 | 243,49 |
(C3×C9).28C32 = C27○He3 | φ: C32/C3 → C3 ⊆ Aut C3×C9 | 81 | 3 | (C3xC9).28C3^2 | 243,50 |
(C3×C9).29C32 = C9.He3 | φ: C32/C3 → C3 ⊆ Aut C3×C9 | 27 | 3 | (C3xC9).29C3^2 | 243,55 |
(C3×C9).30C32 = C27⋊2C9 | central extension (φ=1) | 243 | | (C3xC9).30C3^2 | 243,11 |
(C3×C9).31C32 = C32⋊C27 | central extension (φ=1) | 81 | | (C3xC9).31C3^2 | 243,12 |
(C3×C9).32C32 = C9⋊C27 | central extension (φ=1) | 243 | | (C3xC9).32C3^2 | 243,21 |