Extensions 1→N→G→Q→1 with N=C3×C9 and Q=C32

Direct product G=N×Q with N=C3×C9 and Q=C32
dρLabelID
C33×C9243C3^3xC9243,61

Semidirect products G=N:Q with N=C3×C9 and Q=C32
extensionφ:Q→Aut NdρLabelID
(C3×C9)⋊1C32 = C34.C3φ: C32/C1C32 ⊆ Aut C3×C927(C3xC9):1C3^2243,38
(C3×C9)⋊2C32 = He3.C32φ: C32/C1C32 ⊆ Aut C3×C9279(C3xC9):2C3^2243,57
(C3×C9)⋊3C32 = He3⋊C32φ: C32/C1C32 ⊆ Aut C3×C9279(C3xC9):3C3^2243,58
(C3×C9)⋊4C32 = 3- 1+4φ: C32/C1C32 ⊆ Aut C3×C9279(C3xC9):4C3^2243,66
(C3×C9)⋊5C32 = C3×C32⋊C9φ: C32/C3C3 ⊆ Aut C3×C981(C3xC9):5C3^2243,32
(C3×C9)⋊6C32 = C3×He3.C3φ: C32/C3C3 ⊆ Aut C3×C981(C3xC9):6C3^2243,52
(C3×C9)⋊7C32 = C3×He3⋊C3φ: C32/C3C3 ⊆ Aut C3×C981(C3xC9):7C3^2243,53
(C3×C9)⋊8C32 = C32×3- 1+2φ: C32/C3C3 ⊆ Aut C3×C981(C3xC9):8C3^2243,63
(C3×C9)⋊9C32 = C3×C9○He3φ: C32/C3C3 ⊆ Aut C3×C981(C3xC9):9C3^2243,64

Non-split extensions G=N.Q with N=C3×C9 and Q=C32
extensionφ:Q→Aut NdρLabelID
(C3×C9).1C32 = C27⋊C9φ: C32/C1C32 ⊆ Aut C3×C9279(C3xC9).1C3^2243,22
(C3×C9).2C32 = C32.He3φ: C32/C1C32 ⊆ Aut C3×C9279(C3xC9).2C3^2243,28
(C3×C9).3C32 = C32.5He3φ: C32/C1C32 ⊆ Aut C3×C9279(C3xC9).3C3^2243,29
(C3×C9).4C32 = C32.6He3φ: C32/C1C32 ⊆ Aut C3×C9279(C3xC9).4C3^2243,30
(C3×C9).5C32 = C9⋊He3φ: C32/C1C32 ⊆ Aut C3×C981(C3xC9).5C3^2243,39
(C3×C9).6C32 = C32.23C33φ: C32/C1C32 ⊆ Aut C3×C981(C3xC9).6C3^2243,40
(C3×C9).7C32 = C9⋊3- 1+2φ: C32/C1C32 ⊆ Aut C3×C981(C3xC9).7C3^2243,41
(C3×C9).8C32 = C33.31C32φ: C32/C1C32 ⊆ Aut C3×C981(C3xC9).8C3^2243,42
(C3×C9).9C32 = C927C3φ: C32/C1C32 ⊆ Aut C3×C981(C3xC9).9C3^2243,43
(C3×C9).10C32 = C924C3φ: C32/C1C32 ⊆ Aut C3×C981(C3xC9).10C3^2243,44
(C3×C9).11C32 = C925C3φ: C32/C1C32 ⊆ Aut C3×C981(C3xC9).11C3^2243,45
(C3×C9).12C32 = C928C3φ: C32/C1C32 ⊆ Aut C3×C981(C3xC9).12C3^2243,46
(C3×C9).13C32 = C929C3φ: C32/C1C32 ⊆ Aut C3×C981(C3xC9).13C3^2243,47
(C3×C9).14C32 = C32.C33φ: C32/C1C32 ⊆ Aut C3×C9279(C3xC9).14C3^2243,59
(C3×C9).15C32 = C9.2He3φ: C32/C1C32 ⊆ Aut C3×C9279(C3xC9).15C3^2243,60
(C3×C9).16C32 = C92⋊C3φ: C32/C3C3 ⊆ Aut C3×C9273(C3xC9).16C3^2243,25
(C3×C9).17C32 = C922C3φ: C32/C3C3 ⊆ Aut C3×C9273(C3xC9).17C3^2243,26
(C3×C9).18C32 = C92.C3φ: C32/C3C3 ⊆ Aut C3×C9273(C3xC9).18C3^2243,27
(C3×C9).19C32 = C3×C9⋊C9φ: C32/C3C3 ⊆ Aut C3×C9243(C3xC9).19C3^2243,33
(C3×C9).20C32 = C923C3φ: C32/C3C3 ⊆ Aut C3×C981(C3xC9).20C3^2243,34
(C3×C9).21C32 = C9×He3φ: C32/C3C3 ⊆ Aut C3×C981(C3xC9).21C3^2243,35
(C3×C9).22C32 = C9×3- 1+2φ: C32/C3C3 ⊆ Aut C3×C981(C3xC9).22C3^2243,36
(C3×C9).23C32 = C3×C3.He3φ: C32/C3C3 ⊆ Aut C3×C981(C3xC9).23C3^2243,54
(C3×C9).24C32 = C9.4He3φ: C32/C3C3 ⊆ Aut C3×C9273(C3xC9).24C3^2243,16
(C3×C9).25C32 = C9.5He3φ: C32/C3C3 ⊆ Aut C3×C9813(C3xC9).25C3^2243,19
(C3×C9).26C32 = C9.6He3φ: C32/C3C3 ⊆ Aut C3×C9813(C3xC9).26C3^2243,20
(C3×C9).27C32 = C3×C27⋊C3φ: C32/C3C3 ⊆ Aut C3×C981(C3xC9).27C3^2243,49
(C3×C9).28C32 = C27○He3φ: C32/C3C3 ⊆ Aut C3×C9813(C3xC9).28C3^2243,50
(C3×C9).29C32 = C9.He3φ: C32/C3C3 ⊆ Aut C3×C9273(C3xC9).29C3^2243,55
(C3×C9).30C32 = C272C9central extension (φ=1)243(C3xC9).30C3^2243,11
(C3×C9).31C32 = C32⋊C27central extension (φ=1)81(C3xC9).31C3^2243,12
(C3×C9).32C32 = C9⋊C27central extension (φ=1)243(C3xC9).32C3^2243,21

׿
×
𝔽